
DESIGNING DOMAIN-SPECIFIC HUMS ARCHITECTURES: AN
AUTOMATED APPROACH^

Ravi MuRjkamula2 Neha Agarwal Pramod Kumar Parthiban Sundaram
Department of Computer Science

Old Dominion University
Norfolk, VA 23529

Abstract
TheHuMs- 'on system automates the

design of HUMS architecanes. The automated
design process involves selection of solutions from
a lare space of designs as well as pure synthesis of
designs. Hence the whole objective is to efficiently
search for or synthesize designs or parts of designs
in the database and to integrate them to form the
entire system design. The automation system adopts
two approaches in order to produce the designs: (a)
Bottom-up approach and (b) Top down approach.
Both the approaches are endowed with a Suite of
quantitative and quahtative techniques that enable
a) the selection of matching component instances,
b) the determination of design parameters, c) the
evaluation of candidate designs at component-level
and at system-level, d) the perfamance of cost-
benefit analyses, e) the performance of trade-off
analyses, etc. In short, the automation system
attempts to capitalize on the knowledge developed
fiom years of experience in engineering, system
design and operation of the HUMS systems in order
to economically produce the most optimal and
domain-specific designs.

1. Introduction
Engineering disciplines progress through

several distinct stages in their evolution: Ad-hoc,
Formal and rigorous, and hilly, Automation [l].
This work focuses on advancing HUMS to the
automation stage since HUMS, as a discipline, is
mature and well established now with various
systems already deployed and in existence for a

long period. The automation system so developed
would attempt to capitalize on the knowledge
developed from years of experience in engineuing,
system design and operation of the HUMS systems
in order to economically produce the most optimal
and domain-~cific designs.

The design of software systems has largely
been performed manually so far. The challenge in
the automation of system designs is (a) the
development of design methodologies that support
automation, (b) the accumulation of knowledge -
components that make up design, trade-offs
involved, decision making Criteria, requirements,
etc. - and also (c) the provision of means to
evaluate the quality of the designs. The automation,
if successful, would be highly beneficial in the
following ways: (a) minimization of costs involved,
(b) improvement in productivity, and (c) production
of optimal and innovative designs, etc.

Our automated design process involves two
main techniques: (a) Selection of solutions f?om a
large space of designs, and (b) Synthesis of designs.
However, the automation process is not an absolute
Artificial Intelligence (AI) approach though it uses
a knowledge-based system that epitomizes a
specific HUMS domain. The process uses a
database of solutions as an aid to solve the
problems rather than creating a new design in the
literal sense. Since searching is adopted as the main
technique, the challenges involved are (a) to
minimize the effort in searching the database where
a very large number of possibilities exist, (b) to
develop representations that could conveniently

' This work is supported in part by a research grant fiom NASA Langley Research Center, Hampton, Virginia
Contact author: Email: mUkka@cs.odu-edu

16

allow us to depict design knowledge evolved over
many years and (c) to capture the required
i n f m t i o n that aid the automation process.

process: Sources and Developers. Sources group
includes end-users, domain experts, requirements
analyst, etc. and the Developers group involves
requirements analyst, system developers, etc. Due
to the ~ t u r e of the data required by the automation
system and the partial reliance on humans for
decision-making, the developers group would be
more successful in intemcthg with the automation
sy-

There are three basic design approaches that
the automation system could adopt such as: (a)
Bottom-up approach, (b) Topdown approach and
(c) Hybrid approach. Bottom-up approach depends
on a hierarchical partitioning of the system into
multiple levels and builds the entire system design
fiom scratch starting from the bottom level up. On
the contrary, the top down approach first starts with
an entire system design and then drills down to
lower levels by searching for the individual
component instances that can fit the design. In this
paper, we shall focus on bottom-up approach since
it is easy to follow, and a large majority of its
techniques are common among the approaches.

involving the following:

Two groups of participants are involved m this

The bottom-up approach is a five-step process

Capturing Requirements Data
Capturing H U M S component
information
Designing the architecture
Evaluating the candidate designs
Producing the System Output:
Architecture Specification

The rest of the paper explains in detail how
each of these steps is implementea Section 2
discusses the related previous work by others. The
automation system is made up of a numbex of
building blocks, which are explained in Section
3.Sections 4 and 5 explain two of the three input
resources used by the automation system namely
the Requirements Information and the Components
information respectively. The selection of HUMS
components for the architecture and the
determination of their configurations are explained

in section 6. The automated design process, the
roles played by different building blocks of
automation system and the evaluation of candidate
designs are desc r i i in section 7. Fmally, section 8
concludes the paper with a summary and future
Work.

2. Related Work
Software architecture has more influence on

the system’s quality attributes than the code-level
practices [q. The advantages of architecture as a
high-level abstraction were realized and the
different techniques to design architectures and to
evaluate architectures emaged [4,14,15]. This
work also resides at the architecture-level, thus
working at an abstraction level that allows analysis
of designs even without accurate or low-level
details.

The Architecture Tradeoff Analysis method
(ATAM) [6,7J is a technique that helps the designer
to perfii trade-off analyses in a principled manner
thereby enabling him to make well informed as well
as optimal tradeoffs. ATAM also incorporates a
process model that an organization must follow
while developing architecture. Our work is closely
related to ATAM in that it also perfom tradeoff
analyses during the synthesis of architecture but it
focuses largely on automation of tradeoff analyses
with very little user intervention.

Attribute-based Architectural Styles (ABM)
[SI are architecture styles that are endowed with a
reasoning hunework useful in analysis of the style
with reference to a specific attribute of interest. A
given ABAS focuses exclusively on a single quality
attribute and thus one needs to consider multiple
ABMs to satis@ several quality attributes. This
work takes advantage of all the work p e r f d by
quality attribute communities and provides us a
formal &mework to analyze and make design
decisions.

S A A M is an evaluation method that uses
scenarios in analyzing architecture for different
quality attributes [9]. The architecture quality is
analyzed by measuring the extent of code
modifications required to implement a scenario.
SAAM is well suited to be used during
implementation stage, while ours is appropriate to
be used during design stage to uncover the

17

problems with the architecture and to improvise it
before implementation.

Automation of design processes has been
researched and developed m compute^ systems as
well as wide variety of other disciplines [3,12]. In
[3], the authors explain and demonstrate how
automation can play a vital role m success of design
engineering but their focus is at a lower abstraction
level than that consi- m our work

Much workis underway on the
standardization of architectures for specific HUMS
functions OT ckmains [10,11]. Nm-proprietary
standards can promote an mvirommmt where end
users have multiple choices that ax^ economical, as
well as high in quality. Our work coexists with and
upgrades this work by incorporating lot of elements
fiom the standard archikcture like functional layers
involved, intdices that need to be supported, etc.
and by adding additional value by enabling analysis
and development of system architectures based on
the standard architectures published.

3. Automation System Building Blocks
Figure (1) shows the basic building blocks of

the HUMS design automation system. The blocks
bounded by the dashed lines represent processes
while the other blocks indicate infinmation
repositories.

The four infhnation repositories are: (a)
Requirements, @) Components library, (c) Design
Space, and (d) Design Specification. Requirements
block contams all requirements information
supplied by the user. Components library is a
repository of component instances supplied by
several vendors. Design space is a database of
designs, which may be templates that can be
instantiated to satisfy specific needs, or specific
designs themselves. Design Specification block
stands for the final design representation that is
generated by the automation system at the end of its
execution. The automation system must satisfy two
requirements while generating the design
specification: (a) Design justifications must be
provided at every stage, and (b) Architecture must
be specified using graphical and textual forms [4,
131.

Explorer explores different combinations, or
The two processes are: Explorer and Evaluator.

searches for solutions at every stage of the design
process and comes out with a set of candidate
design solutions that solve the problem at hand at
that level. Evaluator checks or evaluates the
candidate architectures at every stage, eliminates
the bad candidates and retains the best ones. Thus,
explorer and evaluator work closely - back-to-back
Explorer completes one step, interacts with
evaluator to narrow down the possible candidates
and then progresses on to the next stage. This
process continues till the entire system design is
completed.

Some of the exploration or reasoning
techniques that could be part of Explorer are given
below:

Compare the requirements data against
the parameter values (Direct
Comparisons, Indirect Comparisons, etc.)
Perform Cost-benefit analyses
Perform Trade-off analyses
Use a criteria list or design guidelines in
the selection of components
Search the designs database for a fitting
solution
Use engineering/formal techniques or
Quantitative design techniques
Use heuristics to solve complex design
problems
others

w
I
I
I
I

U I
~ ~~~~

Figure 1 : Automation System Building Blocks

18

Similarly, the techniques that could be packed
within the Evaluator process are listed as follows:

Use evaluation metrics to ascertain
quality (a) at system level, (b) at
component level
Build a paretooptimal set to eliminate
bad candidate architectu~s
Use heuristics in evaluation

Component
Sensor

Transducer

Sensor-Node
bus
Node

Network

4. Capturing Requirements
Information

Irrespective ofthe design approach adopted,
the requirements must be specified m a way that
enables the automation system to choose the most
optimal design. The general tasks that are involved
in any design process drive how the requirements
information must be represented. Some of the
general tasks are direct comparisons, cost benefit
analyses, tradeoff analyses, etc.

information must allow the ready employment of at
least the most general strategiedtactics listed above.
Let us now look at a few objectives that a
representation should satisfy:

The way we represent requirements

All details (Quantitative and Qualitative)
pertinent for the design process must be
captured
Must support a format that allows
qualitative analysis also
Data and units specified must be generic
enough to allow selection from among
component instances of different types
Whenever data is inaccurate, the
associated degree of uncertainify must be
specified
Future growth/usage profile must be
captured wherever appropriate

basedonXMLthatdefinesallthepertinent
infixmation that must be captured during the
requirements gathering phase. These templates
enable developers to gather enough information and
in correct form so as to perform effective designing.
One difference from the regular requirements
analysis process is that here the details gathered are
a mixture of ‘what’ and ‘how’ inf’tion as
against the usual practice of recording ‘what’
information alone. The use of X M L in the

We have dtvelapedrequirements templates

Description
Senses the measurement
parameters
Converts any type of input signal
to electrical signal appropiate for
the nodes
Connects the sensors to the
computing node
ComputerdNodes where all
processes reside
LAN, WAN or Internet

definition of templates provides better organization
and extensibility options. Refer to Appendix A for a
sample requirements representation.

5. System Decomposition/
Components

System decomposition is essential for both
topdown approach and bottom-up approach. A
HUMS system is decomposed into components.
E.g.: Sensors, Nodes. Multiple vendm exist who
can supply these components and a vendor-supplied
component is called component instance. Thus,
there exist multiple component instances for a gim
component.

Table 1: System Decomposition Adopted

connecting all the nodes
Processes Processes that implement HUMS

The design approach comes out with a system
design that describes what components make up the
system and how they are interconnected. It also
specifies the subset of suitable component instances
that can be used for the components specified as
part of the design.

The HUMS system could be decomposed in
multiple ways. So, the most important requirement
is that the specific decomposition chosen must (a)
accelerate the selection of best components, and (b)
ensure the attainment of quality attributes. We have
chosen the most fundamental decomposition
possible that gives the maximum flexibility in using
the components in composing system designs.
Table 1 depicts the system decomposition into
various components.

19

6. Selection of Components & their
Configurations

This section briefly descriis how the lower
level components like sensors, transducers, nodes,
etc. are selected and how their configurations are
determined. Once the nodes have been selected, the
design technique explained m section 7 can be used
to map software architecture onto these nodes.

The user specifies the following sensor
inhrmation: (a) Location of sensors, @) Type of
sen-, (c) - * t information related to
sensors, etc. This information directly allows us to
select sensors. The rest of the components like
transducers and nodes are cletembed based on five
factors namely: (a) Bandwidth limitations, (b)
Buffer limitations, (c) Sensor, Transducer topology,
(d) Processing Speed, and (e) Storage requirements.
However only those CoIIlpOnenf instances that pass
the evaluation by weight heuristic are considered.
See Appendix D for sample weight heuristic.

Bandwidth Limitations:

multiple sensors are comKcfed to the same
consumer (transducer or node). However, the
number of sensorsthat can be connected to the
same consumer depends on the external I/O Bus
capacity, besides other factors. Our work uses a
greedy algorithm to assign multiple sensors to
transducers and then multiple transducers to nodes
by maximizing the bandwidth utilizations. For
example, if sensors with data rates of (in unitdsec)
2,3,7,10 and if transducers with maximum
capacity of 15 unitdsec are present, two transdurn
would be chosen to connect to the 4 Sensors-one
receiving 15 unitdsec and the other 7 unitdsec.
This approach thus minimizes co~lsumers required.

Sensors produce data at a specific rate and

Bufler Limitations:

transducer based on bandwidth considerations can
be supported because the limited buffer space
available at the transducer further restricts the
number of sensors connected. The same argument
applies to the connection of transducers to nodes.
We alter the sensor-transducer mapping and the
transducer-node mapping based on buffer space as
the second step. This problem is mainly due to the

Note that not all sensors that were mapped to a

periodicity of the producers: Some producers are
periodic and others are aperiodic as shown in Figure
(2). For aperiodic case, the consumer must satis@ at
least the condition that the buffer space available
must be greater than/equal to twice the peak data
rate.
I I

It

Figure 2: (a) Periodic Sensor @) Aperiodic
Sensor

Sensor, Transducer Topology=
The distance over which a sensor can

communicate effectively affects the position at
which a consumer is located. Thus, the signal
attenuation in the medium is an important
consideration. Our work determines the positions of
the consumers based on several factors like the
power levels (pi, Pod of the transmitted signals and
the attenuation coefficients (T) of the buses
involved. For e.g., using fiber optic buses, the

distance of separation, d = - (1 0 lOg,, -) 1 P,
z P,

Node Configuration:

speed, memory capacity, disk space must be
determined using some reliable techniques. We
make use of custom benchmarks designed for
specific domains or existing benchmarks in our
decision-making. Such benchmarks could give us
quantitative information related to multiple factors
involved thereby allowing us to determine the node
configuration. Table 2 displays the sample
benchmark data that would help us to determine

The configuration of the nodes like processing

20

disk space, bus bandwidth, processor speed, etc.
assuming that all options could be expessed as
transactions in HUMS systems. Refer to [161 for a
more detailed account. Note: TPS stands for
Transactions per second.

Table 2: Relationship between TPS and file size

File Size
0.1 GB

lo00 100 GB

7. The Automated Design Process
A designer relies on the design knowledge that

has been accumulated over several years to guide in
his design task This knowledge captured in the
form of principles and guidelines could minimi7e
errors and enable achievement of quality attributes.
The design space or design library (see Figure 1) of
the automation system stores this design knowledge
in form of design templates called base models.

A base model is like an architectural style [8,
151 containing infarmaton about the components
that make up the architecture and their topology.
These models also possess quality attribute models
(formula sections), which enable us to determine
the effect of the base model on the specific quality
attributes. These quality at!riiute models are similar
to those discussed in [8] but their purpose in this
design technique is to enable analyses as well as
automation.

The design space consists of several such base
models and each model guarantees one or a few
quality attributes alone. If base model ‘A ’ serves to
improve quality attribute ‘B’, then model ‘A ’
disregards all quality attributes except ‘B ’. Thus,
the base models tend to skew the 6nal design with
respect to the quality attributes that they deal with,
Figure 3 shows the specification of one of the base
models called Flat Model that improves
performance.

Quality attributes are often in conflict with
each other. Achieving one quality attribute often
comes at the cost of another. For example, design
decisions favoring good performance affect
scalability, those favoring scalability affect
availability, and so forth. Resolving between these
competing set of quality attributes requires tradeoff

analysis. This automated approach hinges on
tradeoff analyses to develop the final design.

Probcd speciicakn: FLAT MODEL

ORMULAS

r =TBL + T I L + NBLITTR

= (1-PBL) x (1-PNT) -x (1-rn)

= (CAP - NBLY NBL

F’igure 3: Base Model Specification: Flat Model
for performance

Since the base models tend to skew the final
design towards one or a few quality attributes, the
Explorer must merge multiple models together to
develop a suitable design. So, we need two different
specifications: (a) Base model specification to
specify the architectural style and the quality
attribute that is favored, (b) Merge specification that
specifies how two different base models can be
merged with each other. These specifications enable

21

the automation system to consider one base model
after another and mere if needed on the fly to
develop the hal design.

A base model specification (see Figure 3)
contains three sections: (a) ptotocol specification
that explains the components, their responsibilities
and the interconnections, (b) Topology that
pictorially represents how the design is organized,
and finally, (c) Formulas which are the quality
attriiute models built for analyzing the effect of the
model on diffgent quality attributes. Quality
attriiute models shown are simplified for
demonstration purposes but can be made realistic
and in fact, sophistication can be built into them
with the help of experts fiom several quality
attriiute communities.

quality attribute models: Performance (Latency
time), Scalability and Availability. Latency Time is
a function of processing time at the nodes involved
and the interprocessor communication time.
Scalability is expressed as a fimction of address
capacity of top-level node while availability is a
hct ion of reliability probabilities of all
components that make up the system. Here's a
quick run through the symbols used in the formulas
section: LT - Latency time, A - Availability, S -
Scalability, NBL - No of bottom level nodes, NMM
- No of networks, 'ITL - Processing time of Top
level node, TBL - Processing time of bottom level
node, TTR - Interprocessor communication Time,
PBL - Probability of failure of bottom level node,
FTL - Probability of failure of top level node, PNT
- Probability of failure of network, CAP - Address
Capacity of Top level node. See appendix B for a
few more sample base model specifications.

In this paper, Formula sections present thre

Analysis of the model=
Latency is the time difference between the

instant when the bottom-level nodes read sensor
data and that when the top-level node outputs the
results.

Latency = {Time to process data at Ni} +
{Time to transmit data by each Ni} +
{Time to process data at top-level)

levels between the bottom level and the top-level
Since the introduction of any intermediate

will add more cost components to the above
formula, intuitively this model supports the design
guideline for improving performance.

Merging Designs

has two approaches:
Ifthere are n base models, then the Explorer

Try all (n!) combinations possible till a
satisfactory design results
Merge the models m any order that
minimks the number of combinations

0

Since the merger of two models is not a
StraighHorward step, we provide another set of
specifications called Merge Specifications to aid the
automation system in its operations. Thus, merge
specifications exist for merging any two base
models together.

These merge specifications will enable the
explorer to combine any combination of base
models, thus leading to m = nC2 + nC3 + . . . + n G ,
+ nC, designs. The responsibility of the designer is
to feed n base model specifications and n G merge
specifications and the system can automatically
explore and possibly develop m designs. As can be
seen, the value reaped due to automation can be
tremendous for higher values of n.

+
52

I 8..
Merged Module
exhibits the
characteristics of I PvramidModel hnth the ?ww mdels

Figure 4: Demonstration of merge process

impact of different quality attributes that conflict
These merge specifications must consider the

22

with one another. For example, increasing the
number of levels gives better scalability but yields
poorer p d i i c e and similarly, increasing the
number of replica managers increases availability
but decreases performance, and so forth. This
emphasizes the need for trade-off analyses. Let’s
first take a look at merge specifications and then
we’ll consider the txade-off analyses.

Figure 4 displays figuratively how different
base models are merged with one another. As the
figure shows, the merger of Flat Model & Pyramrd
Model results in a design which is influenced by
two conflicting forces: Flat Model tends to lower
the number of levels while Pyramid Model tends to
increase the number of levels. The number of levels
that should be in the final design is determined by
performing tradeoff analysis. Appendix C shows a
few sample merge specifications.

Performa Scalability
nce (ms)

Tradeoff Analysis
Every iteration of merging of base models

results in structural changes, which impact the
several quality athiiutes mvolved in d i f € i i t ways.
The tradeoff is achieved m an interactive miinner,
i.e., the user umtrols the merging so as to achieve
the desired benefits. Of course, the tradeoff
analyses can also be completely automated if all the
required information is stored.

Demo run:
Tradeoff analysis is explained with the help of

a demo run. Table (3) shows the requirements
information that contains three quality attributes for
this demo.

Availabi i

Table 3: Sample Quality Attributes
requirements

Quality Attribute
Perfimnance

Requirement
160 ms

I Availabilitv I 95% I

First, the performance model namely the flat
model is used to achieve the required performance.
Since this model favors performance, all other
quality attributes except performance are
disregarded as clearly depicted in Figure (5) &
Table (4). The values of quality attributes are
determined dynarmcally using the quality attribute

models fkom the formula section. (See Figure 3)
Latency time requirements are satisfactorily met but
both Scalability and Availability requirements are
not met. Note that the normalized latency time
values are displayed in the graph and the
corresponding actual values are displayed in table 4.

E M of F M Model

QResuB IUTarget

Figure 5: Effect of Flat Model

L 160 1 1.8 I 0.95 I
105 I 1.11 I 0.33 i

During the second iteration, the automation
system searches for a base model that can improve
scalability. Now the objective is to achieve both
performance (that was obtained during the last
iteration) and scalability.

Table 5: Effect of Merging Flat Model with
Pyramid Model

0.268

During this demo, the system merges the two
base models - Flat model and Pyrarmd model, and
the results are as shown in Figure (6) and Table (5).

23

Values are computed using quality auxiiute models
in the base model specification (See Appendix B).

As canbe seen, as the internalnodesare
increased, the scalability increases but affects both
performance and availability. However, the
performance requirements are met even though it is
takes higher value for NIN = 3. Thus, with this
merging, both the performance and scalability
requirements are met. The next iteration focuses on
achieving availability. Note that figure 6 shows
normalized latency times while Table 5 has actual
values.

~~~ 

Hat Model + Pyramid Model  

Wwmnce SCalaMity AvataMity 

Figure 6: Effect of Merging Flat Model with 
Pyramid Model 

The third iteration starts by a search for a base 
model that can guarantee availability. During this 
demo, a base model called Gossip model was 
chosen and was merged with the existing design 
(that resulted h m  merging Flat model and Pyrannd 
model). The results are shown in Figures (7,8) and 
Table (6). 

The user can control the synthesis of the 
design. After each merger7 the data regarding the 
quality attributes is mlayed  to the user. The user 
uses the data to understand the tradeoffs involved 
and makes the final decision about whether or not 
another design iteration is required For example, he 
may choose the design after the 3d iteration (See 
Figures 7,8) with NIN =3 andNRM = 3 ,4  or 5 
based on his interests. 

Flat Model + Pyramid Model + 
Godp Model 

2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

Figure 7: Effect of merger of Flat Model, 
Pyramid Model and Gossip &Bel (NIN = 2) 

Rat M o d e l  +Pyramid Model +Gossip 
Model 

2.5 

2 

1.5 

1 

0.5 

0 

-W;Nw=l -+-NIK3;N?M=2 
. - -8. - - m;m # . w. e -;- 

Figure 8: Effect of merger of Flat Model, 
Pyramid Model and Gossip Model @IN = 3) 

24 



Table 6: Effect of merger of Flat Model, 
Pyramid Model and Gossip Model 

4 

8. Conclusion: 
Techniques for design, design automation and 

evaluation have been developed The design 
automation technique can automatically produce 
(n!) designs for n base models. Base models have 
been greatly simplified for the proof-ofconcept 
study and sophistication must be added to represent 
real time behavior. The mean values used for 
calculations and the benclmxirh used have to 
represent domain i d i t i o n .  

SINA 

No networking 
Networking Wireless 

Appendix 

Appendix A: Sample Requirements 

Table 7: Sample Requirements Information for 
sensors 

Temperature, Pressure, 

Fiber optic, piezoelectric, 

I wireless 1 

Appendix B: Base Model Speafidons 

Robad speciicalion: PYRAMID 
MODEL 

FORMULAS 

LT = TBL + TIL + TIN + (NBL + NIN) x l l R  

A = (1-PBL) m x  (1-PNT) MX (1-PTL) x (1- PIN) 

S = (CAP x 111 - NBL)/ NBL 

NOTE: 111: Iterator (Current number of levels 
considered) 

Figure 9: Base Model Specification: Pyramid 
Model for Scalability 

Measurement 
range/duespec Absolute values or Range 

25 



Appendix C: Merge Spea@xtions Rdocd speciicakn: GOSSIP MODEL 

a n  - El  
FORMULAS 

LT = TBL + l l L  + NBLxTTR+ NRM TGS 

A =  (1PBL NRY) =X (l-PNT) -X (1-PTL NRY) 

S = (CAP- NBLY NBL 

NOTE: TGS: Gossip lime per unit data 

Figure 10: Base Model Specification: Gossip 
Model for Availability (See [lq) 

NOTE: All specifications are implemented in 
XML. 

Merge specifcaf#r: FLATPYRAUID 
MODEL 

Figure 11: Merge Specification: Flat Model + 
Pyramid Model 

NOTE: All merge specifications are 
implemented in XML. Only a sample representation 
is shown in Figure (1 1) due to space constraints. 

Appendix D: Weight Heuristics 

Detennination of number of Transducers 8 their 
p0sitiOnS: 

1. Find BWm = max (BWTmsl, BWTmd.. . BWT-) 

2. Find BUFm = max (BUFrraal, BUF~nrn2 ... BUFT-) 

3. Find Wh = min (W~TWI, W~nrn2... WT-) 

4. For every type of sensing required { 

Forevery sensor, sj of the seleded sensing type { 
Find m, number of sensing locations 

Find r, data rate ofthe sensor sdected 

Rnd m’, number of sensors per transducer 
m’ =floor ( B W A )  

While (m’ x PBR x 2 >= BUFmax) 
m’ = mI-1; 

Find T, number of transducers required 

T = ceil (m’hn) 

L = 0 (Initialization) 

(Contd.) 

26 



Determination of number of Transducers &their 
positions (Contd): 

For every lransciucw, ti m T { 
Determine the postion & Sensor list of ti 

Find 5 s t ,  Length of buses used to 
conned ail sensorsin the list to ti 
nbusep=Tlbuses+cLsG 

1 
WST = m" WSTQ + L + M A , ,  

StorepositionQ llposiioftransducer,b 

1 
WT [k] = min (WST m, V j) 

Position [kl= position of transducer that give 
bast weight for this sensing type 

1 

Figure 12: Sample Weight Heuristic to select 
transducers 

NOTE: Weight heuristic principle: Select a 
sensor of the sum of its weight and the weights of 
the lightest instances of the other components 
satisfies the entire system's weight constraint. This 
principle is applied for every component. 

References 
[ 11 Kathail, Vinod, et al., Sept 2002, PICO: 
Automatically Designing Custom Computers, 
computer, pp.39-47. 

[2] Tanenbaum, Andrew S., 1999, Computer 
Networks, Prentice a l l ,  3 Ed. 

[3] Willis, R.R and E.P. Jensen, 1979, Computer- 
aided design of Software Systems, Roc. Of 4* htl 
Conference of Software Engineerin& Munich, 
Germany, pp. 116-125. 

[4] Allen, Robert J., 1997, A Formal Approach to 
Software Architecture, Technical Report: CMU- 
CS-97-144, CMU. 

[5]  Mukkamala, Ravi, et al., 2001, Design and 
Analysis of a Scalable Kernel for Health 
Management of Aerospace Structures, 20& Digital 
Avionics Systems Conference, FL, USA. 

[q Barbacci, Mario R, et al., May 1998, Steps m 
an Architecture Tradeoff Analysis Methak Quality 
Attribute Models and Analysis, Technical Report: 
CMU/SEI-97-TR-029, CMU. 

[7] Kazman, Rick, et al., Aug 1998, The 
Architecture Tiadeoff Analysis Method, Roc Of4& 
Intl Confiimce on Engineering of Complex 
Computer Systems, Monterey, CA 

[SI Klem, Mark and Rick Kazman, Oct 1999, 
Attribute-Based Architecml Styles, Technical 
Report: CMU/SEX-99-TR-022, CMU. 

[9] Kazman, Rick, et al., May 1994, SAAM: A 
Method for Analyzing the Propaties of Software 
Architecture, Proc of Intl. Conference on Software 
Engineering, Sorrento, Italy, pp. 81-90. 

[lo] Lebold, Mitchell, et al., 2002, A Framework 
for Next Generation Machinery Monitoring and 
Diagnostics, Proc of 56& Machinery Failure 
Prevention Technology, pp. 115-126. 

[ 113 Thurston, Michael & Mitchell hbold, 2001, 
Standards Developments for Condition-based 
Maintenance Systems, Proc of 55* Machinery 
Failure Prevention Technology, pp. 363-374. 

[12] Navinchandra, D., 1991, Exploration and 
Innovation in Design, Springer-Verlag. 

[13] -, OMG Unified Modeling Language, 
http:ffwww.oma.orn/. 

[14] Pressman, Roger S., 1996, Software 
Engineering: A Practitioner's Approach, McG~aw- 
Hill Publishers, 4* Edition. 
[ 151 Garlan, David and Mary Shaw, Jan 1994, An 
Introduction to Software Architecture, Technical 

[ 161 Patterson, David and John Hennessy, 1996, 
Computer Architecture: A Quantitative Approach, 
Morgan Kaufmann Publishers, 2"d Ed. 

[ 171 Coulouris, George, et al., 2001, Distributed 
Systems: Concepts and Design, Addison-Wesley, 

Report: CMU-CS-94-166, CMU. 

3d Ed. 

27 


